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ABSTRACT

A new spectral domain method is proposed for

the exact and efficient numerical full-wave analy-

sis of planar multilayer and multiconductor optical

and microwave waveguide structures. It includes a

systematic procedure with very less analytical and

computational effort. The propagation constants

are calculated for some examples and compared to

existing results.

INTRODUCTION

One of the most widely applied methods for the

analysis of planar waveguide structures and res-

onators is the spectral domain approach (SDA)

which can be used for open as well as for en-

closed structures [1], [2], However, the applica-

tion requires a significant analytical preprocessing

in formulating the integral equations involving the

dyadic Green’s function of stratified dielectric lay-

ers in spectral domain and in choosing suitable basis

functions for the current components on the metal-

lizations in the interfaces. The evaluation of the

integrals makes a discussion of the integration path

and the location of the surface wave poles of the

Green’s function in the complex plane necessary.

Another method, which is simpler to apply and

therefore has found growing interest in recent years,

is the method of lines (MoL). It uses a finite dif-

ference formulation for the differential operators

and a discrete Fourier transform of the field compo-

nents [3], [4]. It has turned out, however, that the

approximation of operators and eigenvalues causes

an error that increases drastically for lhigher order

modes and leads to a disadvantageous convergence

behavior requiring large storage and unnecessary

long computation time for acceptable results [6].

A first attempt has been made to combine MoL

and mode-matching to the space-spectral-domain

approach (SSDA) [5]. But this procedure is also

based on the approximation of the differential oper-

ators.

It is the aim of this contribution to introduce

a new procedure that combines the advantages of

both methods but mostly avoids their shortcomings.

All field and current components are represented
m

.
by an orthogonal set of basis functions which are

the eigensolutions of Helmholtz’ wave equation for

suitable boundary conditions. Corresponding to the

discrete Fourier transform, these functions are dis-

cretized at equidistant points of which the number

is related to the highest order mode in accordance

with the sampling theorem,

FOUNDATIONS AND APPLICATION

A typical planar waveguide structure is shown in

Fig. 1. It may consist of multiple dielectric layers

with multiple conducting strips in the interfaces of

arbitrary layers. Starting point of the analysis is the

wave equation (normalized with /co)

(82 6’2
~+jj-jjz )+&T–k: !L,h=o (1)

for the two independent field components +.,~ =

EZ, H. and an assumed wave propagation
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exp j( wt – kZ,z) within any layer enclosed by lat-

eral electric and/or magnetic walls. Ez and H. must

then fulfill different boundary conditions which are

of the Dirichlet and Neumann type.

I ‘r5 I

Fig. 1. Multilayer/multiconductor

microwave structure

Solving the complete boundary value problem by

means of a modal expansion of the fields given by

the Fourier series

i= 1

with kci and p; following from the corresponding

boundary condition, results in a set of ordinary dif-

ferential equations

(’$-’’)$=0
(3)

with the diagonal matrix k; = k: – (E. – k~)I.

Writing (2) as the scalar product y.,~ =

~e,hte,hwith the modd vectors t.,h, we always find

that &te = th and ~th = –te or vice versa which

is a consequence of the dual boundary conditions.

Using this feature and the orthogonality prop-

erty of trigonometric functions, we are able to trans-

form all field components into spectral domain and

with the solution of (3) a hybrid matrix formulation

is obtained combining the tangential field compo-

nents on both sides of an arbitrary layer i (Fig. 2)

[1

ii.
with the special definitions fl; =

–jEZ ~’

H; = qo
[1

–jHz

iiz ~“

YIJ

(4)

Fig. 2. Stratified dielectric

For the whole stratified structure an equivalent

circuit can now be given (Fig, 3), The metalliza-

tions in the interfaces are represented by current
.-.

sources J = q.
jJ~

~z
and thus all continuity re-

quirements are ‘filfiile~ automatically. For open

structures, the admittance matrices Yo,n for the ter-

mination at the bottom or the top include the radi-

ation conditions. In the case of metallizations they

( )
have to be replaced by electric shorts fio,n = O ,

What follows is simple network analysis tech-

nique to obtain an equation combining the currents

on the strips and the tangential electric field com-

ponents in the interfaces by means of

Z.j=ti. (5)
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Combined TE/TM equivalent circuit for the whole structure

Herein, ~ is known as electric field dyadic

Green’s fimction in spectral domain. It’s general

form for a structure with multiple metallizations in

the interfaces m = 1, ..., M is given by (cf. [7])

[

ill Z12 o 0 ... 0

Z21 Z22 Z23 O ... 0

0 Z32 Z33 Z34 ... 0
X1 = o

1
0 E43 i44 ... 0 .

[;’””’ “.

0000 ... iA,fM1
(6)

The preceding steps are similar to the approach de-

scribed in detail in [7]. They can be performed

numerically if the structure is complicated or an-

alytically for simple configurations. In the latter

case, the analysis takes place in Fourier transform

domain and the spectral wave number k. is simply

replaced by its discrete form, the diagonal matrix

k z,
For a solution of (5), the boundary condition

Eta = O on the metallic strips has to be met. To

this end, field and current components are taken only

at equidistant points x~ = h . j, j = 1,2, ..., N

and the Fourier series is cut at i = N according

to the sampling theorem. This gives the procedure

its name as discrete mode matching (DMM). Under

these conditions, the discretized components are ob-

tained by means of a transformation Y = Z% with

the modal matrix T combined of the column vec-

tors t at the discretization points. It is identical to

the transformation matrix used in the MoL and has

been proven to be orthogonal because it is related

to the DIT.. Since J = O outside the strip, we obtain

a reduced set of equations in space domain

zmdJ = O (7)

which is solved as an indirect eigenvalue problem

for the propagation constant kZ.

RESULTS AND CONCLUSION

For the example of the propagation constant of a par-

tially filled waveguide, the accuracy of the DMM is

compared to the MoL and depicted in Fig. 4. With

the DMM we directly obtain the analytical solution

for each TN@mode according to the sampling the-

orem, whereas in the MoL a large oversampling rate

is necessary due to the approximation of operators

and eigenvalues.

1.01, 1 I

5
TMY3r) ~Y2rJ ~Ylo

0.998, 1 1 I
o 0.1 0.2 0.3 Oznr

Normalized discretization distance h/a

Fig. 4. Convergence of the normalized propagation con-

stants of the fundamental and higher order modes of a

partially filled waveguide to their exact analytical values.

a/~0 = 2, b/a = 0.4, d/b = 0.2, c. = 2.55.

MoL: Method of lines, DMM: Discrete mode match-

ing. The data labels indicate the number of discretization

points for one field component.

The next example shows the variety of this method

and its applicability to arbitrary complicated struc-

tures (Fig. 5). In principle there are no restrictions

of the number of dielectric layers arnd microstrip
lines,
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Fig. 5. Dispersion characteristic of the fundamental mode

of a multilayer/multiconductorrnicrowave structure (open

at the top) over a wide frequency range. a = 20m m, WI = [7]

I.l mm, W2 = 1.6mm, W3 = 1.8 mm, w4 = 2.3 mm,
S1= 8.7mm, s2 = 7.5mm, s3 = 1.6mm, S4= 9.2mm,
dl = 1.2mm, d2 = l. Omm, ds = 0.7mm, d4 = 1.5mm,
q.l = 2.3, G.2 = 8.875, er3 = 5.0, G.4 = 12.0, cr5 = 1.0

The generalization of this procedure to inhomoge-

neous dielectrics, finite thicknesses and conductor

losses as well as to 3 dimensions and other coordi-

nate systems is straightforward and will determine

future works. It is also possible to include lateral ab-

sorbing boundaries for the investigation of radiation

effects.

To sum up, the DMM provides an easy to ap-

ply CAD procedure with minimal discretization and

nonoscillating convergence behavior, which should

be very advantageous for the analysis and design of

planar optical and microwave waveguide structures.
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