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ABSTRACT

A new spectral domain method is proposed for
the exact and efficient numerical full-wave analy-
sis of planar multilayer and multiconductor optical
and microwave waveguide structures. It includes a
systematic procedure with very less analytical and
computational effort. The propagation constants
are calculated for some examples and compared to
existing results.

INTRODUCTION

One of the most widely applied methods for the
analysis of planar waveguide structures and res-
onators is the spectral domain approach (SDA)
which can be used for open as well as for en-
closed structures [1], [2]. However, the applica-
tion requires a significant analytical preprocessing
in formulating the integral equations involving the
dyadic Green’s function of stratified dielectric lay-
ers in spectral domain and in choosing suitabie basis
functions for the current components on the metal-
lizations in the interfaces. The evaluation of the
integrals makes a discussion of the integration path
and the location of the surface wave poles of the
Green’s function in the complex plane necessary.
Another method, which is simpler to apply and
therefore has found growing interest in recent years,
is the method of lines (MoL). It uses a finite dif-
ference formulation for the differential operators
and a discrete Fourier transform of the field compo-
nents [3], [4]. It has turned out, however, that the
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approximation of operators and eigenvalues causes
an error that increases drastically for higher order
modes and leads to a disadvantageous convergence
behavior requiring large storage and unnecessary
long computation time for acceptable results [6].

A first attempt has been made to combine MoL
and mode-matching to the space-spectral-domain
approach (SSDA) [S]. But this procedure is also
based on the approximation of the differential oper-
ators.

It is the aim of this contribution to introduce
a new procedure that combines the advantages of
both methods but mostly avoids their shortcomings.
All field and current components are represented
by an orthogonal set of basis functions which are
the eigensolutions of Helmholtz’ wave equation for
suitable boundary conditions. Corresponding to the
discrete Fourier transform, these functions are dis-
cretized at equidistant points of which the number
is related to the highest order mode in accordance
with the sampling theorem.

FOUNDATIONS AND APPLICATION

A typical planar waveguide structure is shown in
Fig. 1. It may consist of multiple dielectric layers
with multiple conducting strips in the interfaces of
arbitrary layers. Starting point of the analysis is the
wave equation (normalized with %)
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for the two independent field components ., =
E, ,H, and an assumed wave propagation
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exp j(wt — k,z) within any layer enclosed by lat-
eral electric and/or magnetic walls. £, and H, must
then fulfill different boundary conditions which are
of the Dirichlet and Neumann type.

Fig. 1. Multilayer/multiconductor
microwave structure

Solving the complete boundary value problem by
means of a modal expansion of the fields given by
the Fourier series
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with k;; and ¢, following from the corresponding
boundary condition, results in a set of ordinary dif-
ferential equations
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with the diagonal matrix k2 = k2 — (¢, — k2)I.
Writing (2) as the scalar product ¥.;, =
q’e,hteﬁ with the modal vectors t. 5, we always find
that Zt, = t, and £-t;, = —t. or vice versa which
is a consequence of the dual boundary conditions.
Using this feature and the orthogonality prop-
erty of trigonometric functions, we are able to trans-
form all field components into spectral domain and
with the solution of (3) a hybrid matrix formulation
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is obtained combining the tangential field compo-
nents on both sides of an arbitrary layer ¢ (Fig. 2)
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Fig. 2. Stratified dielectric

For the whole stratified structure an equivalent
circuit can now be given (Fig. 3). The metalliza-
tions in the interfaces are represented by current
%

z
quirements are fulfilled automatically. For open
structures, the admittance matrices ?O,n for the ter-
mination at the bottom or the top include the radi-
ation conditions. In the case of metallizations they
have to be replaced by electric shorts (ﬁo,n = 0) .

What follows is simple network analysis tech-
nique to obtain an equation combining the currents
on the strips and the tangential electric field com-
ponents in the interfaces by means of

sources J = 10 and thus all continuity re-

Z-J=E. (5)
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Combined TE/TM equivalent circuit for the whole structure

Herein, Z is known as electric field dyadic
Green’s function in spectral domain. It’s general
form for a structure with multiple metallizations in
the interfaces m = 1,-- -, M is given by (cf. [7])

Ly L 0 0 0 ]
Ly Lyp Ly 0 0
7 0 Lz Lz L 0
0 0 Ly Ly 0

| 0 o0 o0 o Ly |

(6)
The preceding steps are similar to the approach de-
scribed in detail in [7]. They can be performed
numerically if the structure is complicated or an-
alytically for simple configurations. In the latter
case, the analysis takes place in Fourier transform
domain and the spectral wave number &, is simply
replaced by its discrete form, the diagonal matrix
k.

For a solution of (5), the boundary condition
Eun = 0 on the metallic strips has to be met. To
this end, field and current components are taken only
at equidistant points z; = A -7, 5 = 1,2,---, N
and the Fourier series is cut at ¢ = N according
to the sampling theorem. This gives the procedure
its name as discrete mode matching (DMM). Under
these conditions, the discretized components are ob-
tained by means of a transformation ¥ = T'¥ with
the modal matrix T' combined of the column vec-
tors t at the discretization points. It is identical to
the transformation matrix used in the MoL and has
been proven to be orthogonal because it is related
to the DFT. Since J = 0 outside the strip, we obtain

areduced set of equations in space domain
Zwead =0 (7)

which is solved as an indirect eigenvalue problem
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for the propagation constant k.

RESULTS AND CONCLUSION

For the example of the propagation constant of a par-
tially filled waveguide, the accuracy of the DMM is
compared to the MoL and depicted in Fig. 4. With
the DMM we directly obtain the analytical solution
for each TMy-mode according to the sampling the-
orem, whereas in the MoL a large oversampling rate
is necessary due to the approximation of operators
and eigenvalues.
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Fig. 4. Convergence of the normalized propagation con-
stants of the fundamental and higher order modes of a
partially filled waveguide to their exact analytical values.
a//\o =2, bfa =04, d/b =02, e = 255
MoL: Method of lines, DMM: Discrete mode match-
ing. The data labels indicate the number of discretization
points for one field component.

The next example shows the variety of this method
and its applicability to arbitrary complicated struc-
tures (Fig. 5). In principle there are no restrictions
of the number of dielectric layers and microstrip
lines.
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Fig.5. Dispersion characteristic of the fundamental mode
of a multilayer/multiconductormicrowave structure (open
at the top) over a wide frequency range. @ = 20mm, w; =
1.Imm, wy = 1.6 mm, w3 = 1.8 mm, wq = 2.3 mm,
s1=8.7mm, sy =7.5mm,s3 = 1.6mm, s; = 9.2mm,
dy = 1.2mm,d; = 1.0mm,ds = 0.7mm,dy = 1.5mm,
er1 =2.3,6,2 = 8.875,6,3 =5.0,6,4 = 12.0,¢6,5 = 1.0

The generalization of this procedure to inhomoge-
neous dielectrics, finite thicknesses and conductor
losses as well as to 3 dimensions and other coordi-
nate systems is straightforward and will determine
future works. It is also possible to include lateral ab-
sorbing boundaries for the investigation of radiation
effects.

To sum up, the DMM provides an easy to ap-
ply CAD procedure with minimal discretization and
nonoscillating convergence behavior, which should
be very advantageous for the analysis and design of
planar optical and microwave waveguide structures.
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